Header

Wednesday, 4 September 2013

IGNOU BCA 5th sem Solved Assignment - Explain each of the following concepts, along with at least one suitable example for each: (i) round-off error (ii) chopping error (iii) truncation error (iv) floating-point representation (v) significant digits in a decimal representation

Explain each of the following concepts, along with at least one suitable example for  each:  (i) round-off error  (ii) chopping error  (iii) truncation error (iv) floating-point representation (v) significant digits in a decimal representation 
Ans

round-off error
Error caused by approximating a figure (number) with fewer digits from an original figure with more digits. For example, rounding off 99.987 to 100. Whereas rounding-errors may be harmless in manual computations, they can become serious-mistakes in computer calculations involving thousands or millions of mathematical operations. Also called roundoff error. Compare with truncation error.

Precision
Base
Sign
Exponent
Significand
Single precision
2
1
8
23+1
Double precision
2
1
11
52+1



Roundoff error is the difference between an approximation of a number used in computation and its exact (correct) value. In certain types of computation, roundoff error can be magnified as any initial errors are carried through one or more intermediate steps.
An egregious example of roundoff error is provided by a short-lived index devised at the Vancouver stock exchange (McCullough and Vinod 1999). At its inception in 1982, the index was given a value of 1000.000. After 22 months of recomputing the index and truncating to three decimal places at each change in market value, the index stood at 524.881, despite the fact that its "true" value should have been 1009.811.
Other sorts of roundoff error can also occur. A notorious example is the fate of the Ariane rocket launched on June 4, 1996 (European Space Agency 1996). In the 37th second of flight, the inertial reference system attempted to convert a 64-bit floating-point number to a 16-bit number, but instead triggered an overflow error which was interpreted by the guidance system as flight data, causing the rocket to veer off course and be destroyed.
The Patriot missile defense system used during the Gulf War was also rendered ineffective due to roundoff error (Skeel 1992, U.S. GAO 1992). The system used an integer timing register which was incremented at intervals of 0.1 s. However, the integers were converted to decimal numbers by multiplying by the binaryapproximation of 0.1,

 0.00011001100110011001100_2=(209715)/(2097152).
As a result, after 100 hours (3.6×10^6 ticks), an error of
(1/(10)-(209715)/(2097152))(3600·100·10)=(5625)/(16384) approx 0.3433 second

had accumulated. This discrepancy caused the Patriot system to continuously recycle itself instead of targeting properly. As a result, an Iraqi Scud missile could not be targeted and was allowed to detonate on a barracks, killing 28 people.

truncation error
Truncation error is the difference between a truncated value and the actual value. A truncated quantity is represented by a numeral with a fixed number of allowed digits, with any excess digits "chopped off" (hence the expression "truncated").
Next Steps
·         "Resource busy" error when truncating table
I am inserting records into a sample table at t...
(SearchOracle.com)
·         Group permission for truncating tables
Sybase expert Mich Talebzadeh explains how to a...
(SearchEnterpriseLinux.com)
As an example of truncation error, consider the speed of light in a vacuum. The official value is 299,792,458 meters per second. In scientific (power-of-10) notation, that quantity is expressed as 2.99792458 x 108. Truncating it to two decimal places yields 2.99 x 108. The truncation error is the difference between the actual value and the truncated value, or 0.00792458 x 108. Expressed properly in scientific notation, it is 7.92458 x 105.
In computing applications, truncation error is the discrepancy that arises from executing a finite number of steps to approximate an infinite process. For example, the infinite series 1/2 + 1/4 + 1/8 + 1/16 + 1/32 ... adds up to exactly 1. However, if we truncate the series to only the first four terms, we get 1/2 + 1/4 + 1/8 + 1/16 = 15/16, producing a truncation error of 1 - 15/16, or 1/16

floating-point representation
There are posts on representation of floating point format. The objective of this article is to provide a brief introduction to floating point format.
The following description explains terminology and primary details of IEEE 754 binary floating point representation. The discussion confines to single and double precision formats.
Usually, a real number in binary will be represented in the following format,
ImIm-1…I2I1I0.F1F2…FnFn-1
Where Im and Fn will be either 0 or 1 of integer and fraction parts respectively.
A finite number can also represented by four integers components, a sign (s), a base (b), a significand (m), and an exponent (e). Then the numerical value of the number is evaluated as
(-1)s x m x be ________ Where m < |b|
Depending on base and the number of bits used to encode various components, the IEEE 754 standard defines five basic formats. Among the five formats, the binary32 and the binary64 formats are single precision and double precision formats respectively in which the base is 2.
Table – 1 Precision Representation
Single Precision Format:
As mentioned in Table 1 the single precision format has 23 bits for significand (1 represents implied bit, details below), 8 bits for exponent and 1 bit for sign.
For example, the rational number 9÷2 can be converted to single precision float format as following,
9(10) ÷ 2(10) = 4.5(10) = 100.1(2)
The result said to be normalized, if it is represented with leading 1 bit, i.e. 1.001(2) x 22. (Similarly when the number 0.000000001101(2) x 23 is normalized, it appears as 1.101(2) x 2-6). Omitting this implied 1 on left extreme gives us the mantissa of float number. A normalized number provides more accuracy than corresponding de-normalized number. The implied most significant bit can be used to represent even more accurate significand (23 + 1 = 24 bits) which is called subnormalrepresentation. The floating point numbers are to be represented in normalized form.
The subnormal numbers fall into the category of de-normalized numbers. The subnormal representation slightly reduces the exponent range and can’t be normalized since that would result in an exponent which doesn’t fit in the field. Subnormal numbers are less accurate, i.e. they have less room for nonzero bits in the fraction field, than normalized numbers. Indeed, the accuracy drops as the size of the subnormal number decreases. However, the subnormal representation is useful in filing gaps of floating point scale near zero.
In other words, the above result can be written as (-1)0 x 1.001(2) x 22 which yields the integer components as s = 0, b = 2, significand (m) = 1.001, mantissa = 001 and e = 2. The corresponding single precision floating number can be represented in binary as shown below,
Where the exponent field is supposed to be 2, yet encoded as 129 (127+2) called biased exponent. The exponent field is in plain binary format which also represents negative exponents with an encoding (like sign magnitude, 1’s compliment, 2’s complement, etc.). The biased exponent is used for representation of negative exponents. The biased exponent has advantages over other negative representations in performing bitwise comparing of two floating point numbers for equality.
bias of (2n-1 – 1), where n is # of bits used in exponent, is added to the exponent (e) to get biased exponent (E). So, the biased exponent (E) of single precision number can be obtained as
E = e + 127
The range of exponent in single precision format is -126 to +127. Other values are used for special symbols.

No comments:

Post a Comment